Biseparating linear maps between continuous vector-valued function spaces
نویسندگان
چکیده
منابع مشابه
Biseparating Maps on Generalized Lipschitz Spaces
Let X, Y be complete metric spaces and E, F be Banach spaces. A bijective linear operator from a space of E-valued functions on X to a space of F -valued functions on Y is said to be biseparating if f and g are disjoint if and only if Tf and Tg are disjoint. We introduce the class of generalized Lipschitz spaces, which includes as special cases the classes of Lipschitz, little Lipschitz and uni...
متن کاملIsomorphisms between Spaces of Vector-valued Continuous Functions
A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable compact metric spaces Qt and Q2> t n e spaces of continuous real-valued functions C ^ ) and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic. The purpose of this paper is to show that this conclusion is ...
متن کاملRealcompactness and Banach-Stone theorems
For realcompact spaces X and Y we give a complete description of the linear biseparating maps between spaces of vector-valued continuous functions on X and Y , where special attention is paid to spaces of vector-valued bounded continuous functions. These results are applied to describe the linear isometries between spaces of vector-valued bounded continuous and uniformly continuous functions.
متن کاملCompactness in Vector-valued Banach Function Spaces
We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...
متن کاملAtomic characterizations of vector-valued function spaces
The rst part of this diploma thesis deals with the topic of nding equivalent norms and characterizations for vector-valued Besov and Triebel-Lizorkin spaces Bs p,q(E) and F s p,q(E). We will deduce general criteria by transferring and extending a theorem of Bui, Paluszy«ski and Taibleson from the scalar to the vector-valued case. By using special norms and characterizations we will derive neces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 2003
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788700003153